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LIFT HYSTERESIS AT STALL AS AN UNSTEADY BOUNDARY-LAYER PHENOMENON ‘

By FRANKLm K. MooRE

SUMMARY

AnaJy8i8 of rotating stall of compre880r blade row reguire8
speci$catian of a dynamic lift curve for the aiafoi.1 8ectiun at or
near 8td?, prt%w?natdy inchding the e~ect of lift hy8tere8i8.
Con8&ierati0n of the Magnu8 lift of a rotating cylinder mqg88t8
performing an undeady boundary-layer cahdatwn to jind the
movement of the 8eparation point8 of an ahfoilfied in a stream
qf oariabb in.ciakmx. Then comideratim of the shedding of
vorlicity im!.othe wake 8hm&?o?yidd an estimate of lift increnwn$
proportwnd to time rate of change of angle of a.ttuck. Tl@
in Crem8nt h the amph’tude of the hy8tere8i8 loop.

An approximate analytis is carrid out aaording to the
foregoing ideaa for a 6:1 elliptic airfoil at the angle of at-tack
for maximum lijt. The wsumption of wnull perturbations
jrom maximum l(ft b made, permitiiw neglect of d&rilm.ted
vorticity in the wake. Th@CdC’l&kLtedhY8tt3Wi3 .?OOp‘h COUf%t5P
ciockunke. The computed increment of lift coejlcieni G gude
large, indicating appreciabh un8teudy lijt hy8tere& for a very
8mall redwced freguency of the flow 08cilla.tion. It ~ a.wnuned
that to the order of Ws analyti, the wake begins at the separation
point de$ned by zero 8hear. Th& a88um@ion i8 y.e3twnuble
jor un8teadyj.ow

Findy, a dticu88ion of the forms Qf hy8terMi8 hwp8 ti
presented; and, for smaU reduced frequency oj 08ciUati.On,it h
conclwded that the concept of a ticous “time lag’) i8 appropr-i@
only for harmonic variation of angle qf attack wdh time at
mean condiiion8 other than maximum lift.

INTRODUCTION

The phenomena of “stfdl flutter” and “rotating stall,”
which may appear in an axial-flow compressor, both involve
fluctuations in flow about blades operating near their aero-
dynamic stall point; that is, at an average flow incidence
angle near that corresponding to maximum blade lift.

The analysis of stall flutter has been held back by uncer-
tainty as to the dependence of airfoil lift and moment on a
fluctuating incidence ftngle near stall. In reference 1 there
was proposed an assumption of the linear aerodynamic force
and moment relations appropriate to steady flow at a small
rmgle of incidence, modified by the further assumption that,
as the airfoil oscillates, the forces and moments lag behind
the angular displacement of the airfoil, owing to viscous
effects. Such a time lag represents an unsteady hysteresis

which may provide cyclic work to amplify or maintain
flutter. Perhaps the fit experimental study of lift hysteresis
was that of Farren (ref. 2). HaIfman, Johnson, and Haley
(ref. 3) and Schnittger (ref. 4) have more recently studied
aerodynamic hysteresis experimentally and have presented
empirical analyses of their results.

An analysis of rotating stall (e. g., that of Sears, ref. 5)
also requires speciikation of a dynamic lift-incidence relation
(or the equivalent, as in the study of Emmons, Pearson, and
Grant, ref. 6, and in lMarble’s analysis, ref. 7). Sears has
adopted MendeIson’s phase-lag hypothesis, and this phase
angle is an undetermined parameter of his analysis.

The concept of viscous time lag is not entirely satisfactory,
however, partly because the phenomenon itself is un-
explained, but chiefly because the concept obviously cannot
describe a lift-hysteresis 100P which might occur at a nominal
condition of maximum lift.

The phenomenon of aerodynamic hysteresis presumably
depends, at least in part, on the airfoil boundary layer.
Also, in ,this study, hysteresis is taken to be a fundamentally
unsteady phenomenon, not explainable by consideration of
the steady or quasi-steady boundary layer.2 In the present
report, consideration is given to the incompressible flow field
about a single airfoil iixed in a flow of oscillating incidence,
under the assumption of an unsteady but nearly quasi-
steady 3 laminar boundary layer. (This sort of boundary
layer is analyzed in ref. 8.) The amdysis of this flow field
is undertaken in order to gain an understanding of the cause
of lift hysteresis and to describe its form and (crudely) its
magnitude for a speciil airfoil at maximum lift.

The basic quasi-steady flow to be used in the present
analysis is provided by Howarth’s analysis (ref. 9) of tbe
way the laminar boundary layer (and, hence, circulation)
about an infinite elLiptic cylinder depends on angle of attack,
applied at a condition of mtium lift. In reference 9,
assumptions are made under which the result becomes
quantitatively inaccurate, though both the approach and
the result are qualitatively instructive. The same limita-
tions affect the present analysis.

Holding the airfoil fked while the flow direction oscillates,
simulates the accepted picture of rot sting stall, in which
successive blade passages stall progressively along a per-
fectly rigid cascade. The somewhat different case of an

I f@emedFs NAOA TN’ S571, 4’Lift Hystertsb at Stall as an Unsteady Bonndary-Layer Phenomenon,” by Pranklin K. Moore. IWJ6.

2 MoW with lfft cmves that break skarply at stall may show M hyW@esfs In stmdy flow, a phanoman &dnot from that umder stndy hei-efn.
J In a qud-stmdy flow, qtcantitim vary sbwly enough m that stcady+mti I-8s@ts apply at A fnstant of time althoti .sMht variations am pzaitted from one frstant b the next.
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oscillating airfoil in a uniform stream, which is appropriate
to the stall flutter problem, is not analyzed in this report.
However, there is an example in the “oscillating airfoil”
category which illustrates the considerations underlying the
present studyj namely, the rotating circular cylinder in a
uniform stream. If a circular cylinder is tired in a uniform
stream, it, of course, experiences no lift.- Further, if it is
given an angular displacement, its lift does not change, but
remains zero. Thus, this degenerate “airfoil” may be said
to be in a stall condition, at maximum lift, in fact. Now, if
the circular cylinder is given a constant angular velocity of
rotation about its axis,’ then a. circulation develops and an
aerodynamic force (Magnus force) transveme to the flow
direction is exerted. If the stream velocity is from left to
right and the rotation is clockwise, then the force is upward
(lift). If the rotation is countercloclnvise, the force is
downward.

This phenomenon is explained (ref. 10, par. 27) by con-
sideration of the boundary layer. In the case of clockwise
rotation, the upper surface of the cylinder is moving with,
and the bottom surface against, the flow. Consequently,
if circulation remains zero, the boundary layer separates
Inter on the top and sooner on the bottom than is the case
when the cylinder is not rot sting. On the top, later separa-
tion means that the velocity outside the boundary layer is
lower at separation. IYow, the separation point signities.
the bee@nning of a wake. Therefore, the clockwise vorticity
shed into the wake, being proportional to the local outer
velocity, is less on the top, and the counterclockwise vorticity
shed at the bottom separation is greater, than in the case of
no rotation.

Therefore, owing to clochtise rotation, a net increase of
count erclochnvise vorticity is shed. By the law of con-
servation of circulation, the circulation therefore camot be
zero, and a clochvise circulation must develop about the
airfoil to compensate for the shed vortici~. According to
classical hydrodynamics, this circulation results in lift.

If, instead of rotating steadily, the cylinder undergoes
a rot ntional oscillation, the same considerations apply, if the
reduced frequency of oscillation is small. In that case, the
oscillating lift is proportional to the instantaneous velocity
of rotation. Thus, when the “angle of attack” of the cylinder
is increasing, there is positive lift, and when the angle is
decreasing, there is negative lift; over a complete cycle,
the curve of lift against angle of attack would be a loop.

Therefore, the circular cylinder undergoing a rotational
oscillation e.shibits lift hysteresis, by reason of the response
of the boundary layer to the movement of the surface.
In the more complicated problem of a noncircukw cylinder,
or airfoil, similar considerations may be expected to apply.
Of course, in th6 airfoil problem contemplated in the present
study, the acceleration of the flow field may be expected
to provide an additional component of pressure lift, de-
rivable from consideration of Kelvin’s impulse.

PRELIMINARY CONSIDERATIONS

STATZMENT OF PROBLEM

Consideration is given to the lift of an isolated airfoil in
the form of an iniinite elliptic cylinder with a semichord

1
a
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and a thickness ratio & at a stalling angle of attack a to
stream of velocity U (see fig. 1). ‘A full fist of notation-.

is provided in the appendix
While the airfoil position and the magnitude of U aro

held fied, the angle of attack a is permitted to vary with
time. Such a flow maybe constructed by allowing u moving
source Q to approach an airfoil fixed in an otherwise uniform

FIGUWI l.—Notatlon and coordinate system for elliptic airfoil nt
angle of attack.

+
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(a)

Sketoh (a) Airfoil and source.

stream, the direction of approach being normal to the stream
direction, as in sketch (a):

As long as h, the instantaneous distance from Q to the nirfoil,
is much greater than 1, the airfoil finds itself dfectivoly in
a uniform stream of incidence

and of magnitude differing from U only to second order in
Q/2ThU. The rate of change of angle of attack is

where the dot signifies differentiation with respect to tirnc.
The foregoing model applies qualitatively to the phenomenon
of rotating compressor stall, if the moving source Q is takm
to represent the approach of a flow blockage propagating
along a cascade.

The present analysis will be carried out as though & is
a small constant. Actually, if & is quite small, and higher
derivatives such as Z are negligibly small, the analysis will
be correct d each instant using the appropriate instanhm-
eous value of & (This is the fit refinement over the quasi-
steady assumption which uses instantaneous values of a
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itself; or for oscillatory a, the linear term of a Taylor series
in reduced frequency.) It is clear that the solution of the
problom to order & provides a measure of hysteresis: Suppose
an expression for lift is obtained in the form

CL=@ +AaCLa+&CL&+ . . .

The first two terms are the quasi-steady contributions.
The term in & provides that, if a is in the process of in-
creasing with time, then the lift is higher (assuming CL&posi-
tive) thrm the quasi-steady value. The converse is true if a
is decreasing. Thus, if a performs an harmonic oscillation,
the lift curve is a loop lying to either side of the quasi-steady
curve of width proportional to the frequency of oscillation.

In order that the present analysis bear on the question of
rotating stall, nominal rmgle of attack must be selected for
which the airfoil is in a stalled condition. Mtium lift is
the most simply described stall condition. Accordingly,
tho nominrd angle of attack is chosen as that for which the
lift is a maximum. This selection is made for two more
compelling reasons:

(1) Tho result will tend to isolate the effect of hysteresis,
inasmuch as no quasi-steady change in lift results from change
in a rtbout the mtium lift value. Of course, if lift hy-
steresis is found under a mean condition of maximum lift,
then the idea of viscous time lag will thereby be shown to
be inappropriate.

(2) Any other assumption wonId lead to great theoretical
complication. The analysis is to be a perturbation of quasi-
steady flow. If, at the nominal angle of attack, change in a

resulted in a quasi-steady change in circulation, then, to
the order of the present analysis, induced wake effects would
require consideration.

POTENTIALFf.Qw

Outside the boundary layer of the ellipse, irrotational
incompressible flow is assumed. At each instant,’ the ve-
locity potential on the surface of the ellipse is (ref. 11, par.
71)

p=w(l+p) Cos (q—a)—:

where the surface is defined by

X=1 Cos q; y=pl sin q

Along the surface, measurings clockwise,

ap ap a~Q=Z=TT ~

dq
~=–(sin’ v+fl’ cos’ ~)-~= –~

[
9=;=* (1+6) s~ (V”)+*

(1)

(2)

(3)

(4)

At this juncture, the condition of mtium lift has not been
imposed, and the circulation I’ is left unspecified. Of
course, both a and r may vary with time.

The foregoing description of the potential velocity dis-
tribution is made on the assumption that the boundary layer
is ne@gibly thin everywhere on the ellipse. This assumption
is usually quite proper ahead of the separation points. The
assumption that the wake aft of separation does not import-
antly aflect the potential flow is not proper; certainly, this
assumption is quantitatively poor at maximum lift, especi-
ally if the potential flow is used to compute separation point.
However, the results obtained on the basis of this assumption
are expected to have qualitative validity.

BOUNDARY-LAYRR ANALYSIS

QUASI-STEADY BOUNDARY LAYER

As a basis for subsequent calculation of unsteady effects,
the quasi-steady lamimm boundary layer on the allipse maybe
approximately determined by the Khrm&n-Pohlhausen inte-
gral method, as improved by Holstein and Bohlen (see ref.
12, ch. XII). The ditlerentia.1 equation is

(5a)

subject to the initial condition at the stagnation point
(q=o) :

KO=O.0770 (5b)

where 2=02 U/Yl, 8 being the momentum thickness. The
function F (K) is tabulated in reference 12.

Determination of Z and I’ at maximum lift,-Given the
velocity distribution ~ the growth of the boundary layer may
be computed from equations (5), the calculation proceeding
until both the separation points (3 and S, fig. 1) are reached,
for which (IC)a=(K)i=–0.1567.

In the present problem the potential velocity distribution
has not yet been fully prescribed, since r remains unknown.
Suppose that, for a given a, a value of r is a.wmed, and the
boundary-layer calculation is carried out (ref. 9). Then, at
the top separation point, clockwise vorticity is shed into the
wake at the rate

(6)

while at 5, counterclockwise vorticity is shed at the rate
1
~ (ti)t. NOW, if (uI)i diffe~ from (uJ;, there is a net change

of circulation in the wake, which is impossible in steady flow.
Therefore, new trial values of I’ must be assumed until the
particular value of r is determined for which the solution of
equations (5) yields separation points for which (Ul)l= (ul) j.

The foregoing procedure must be carried out for each of a
number of angles of attack in order to determine the values of
a and I’ at maximum lift. In reference 9, Howarth per-
formed these calculations for f?= 1/6 and determined a the-
oretical lift curve. The mtium value of r/2Wl was found
to be 0.0761 at an angle of attack a=7°. His complete dis-
tribution of Z at this condition is not presented in reference 9.

~Tbe qnmel+tmdy nssmnptfon applk preelwly for the cnknlatkm of the umtmdy veloclty potontlef.
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Accordingly, the calculation has been repeated by integrat-
ing equation (5a) in the form

dZ
~=A(T)F(K); K=a(q)Z (7a)

where

A(q) = –~; a(~)= –* (7b)

and, from equation (4),

[
q=; : SiIl (v—70)+0.07611 (8)

At the forward stagnation point where q=O, TO=190.74°,
and the initial condition is, from equations (5), (6), and (7a),

ZO=O.0770J(ZQ=0.00407 (7C)

The solution was obtained using a step-by-step method in
which a parabola is passed through two known values and the

%0 120 160 200 240 –280 320 360
Coordinate on wrfm of ellipse, q, &g

FIGURE 2.—Distibution of thioknesa parameter Z around ellipse.

mmt unknown value of dZ/d7, integrating to find Z in terms of
the unknown dZ/dq, then applying equation (7a) at the un-
known point, to solve for dZ/dq. Two starting values were
found from a Taylor series about q~. The step size in q was 10°
except near the stagnation and separation point where finer
spacing was used. The solution of Z is shown in figure 2 and
in table I. The separation points, for which K= —0.1567,
occurred at 7=80.0° and 340.83°. Of course, q should be
the same at 5 and ~. The dMerence cited in the table indi-
cates the degree of error present in the calculations.

Determination of t)Z/h—For subsequent use in the
unsteady equations, it is necessary to lmow the rate of
change of Z with a in quasi-steady flow. At mtium lift,
when a is changed, the quasi-steady boundary layer changes,
and the locations of the separation points are changed. Of
course, the velocities at g and 3 must remain equaI, because
iW/i3a=0 at mm5nmm lift, by definition.

COMMITTEE FOR AERONAUTICS

Differentiating equation (i’a) yiekls

dz=
-#3(r))z.+m?)

where

(m)

(9b)

The initial condition for Z. at VOis determined by specifying
that dZJd7 must be finite there; from equations (W) and
(9b),

ZVqu–ZqqF’

)(Za)o=( *,F, 0=–0.00660 (f)c)

In equations (9) all quantities are to b~ evaluated nt tho
condition of maximum lift; the appropriate e supmwript (0)

FIGURE3.—Distribution of derivative Z- around cllipso.

is omitted for brevity. Of course, for purposes of finding
g= and q- in equations (9), the angle of attnck of 7° should
be replaced by a in equation (8) and set equal to 7° ngain,
subsequent to differentiation. Equations (9) have been
integrated to yield Z., by the same method as described for
finding Z, and the result is shown in figure 3 and in toble I.

UNSTEADY BOUNDARY LAYRR

The next step in the analysis is to determino tho depend-
ence of the boundary layer on the angular velocity a, m-
resumedsmall. To this order of approximation, equation (8)
describing the potential flow must be modified to include the
possibility of a contribution to circulation in proportion to
& (or, in dimensionless form, c~ alJU), M fOllOWS:

[

‘U,17.
~=n=z 6 w “’’-7”)+0.0761+7’ 1 (lo)
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The coefficient of circulation hysteresis 7 must be found from
o condition of vorticity shedding at the separation points of
the. unsteady boundary layer. The contribution to lift
proportional to & then follows. Determination of the proper
vort,icity-shedding condition
qucnt section.

The unsteady form of the
(see ref. 12) is

will be discussed in a subse-

Kfirmfm momentum equation

Steady equations (5a) and (7a) are obtained from equation
(11) by omitting the term on the right side. An iteration
procedure might then be adopted: The quasi-steady 6* can
bo substituted into the right side of equation (11), and a
new solution obtained, to include first-order unsteady
effects. Using the definitions of reference 12, and writing
the time derivative in equation (11) as

(12)

them is found, corresponding to equation (5a),

Tim function fl(~) is tabulated in reference 12, and g is given
by equation (10). Again, for purposes of finding g= and
g~, the angle 7° in equation (10) should temporarily be
replaced by a.

Instead of the indicated iteration, in the present study
the equivalent procedure is adopted of iimling the coti-
cicnts of the expansion

Z= Z(OJ+AaZa+&,+ . . .

The coefficients Z@) and Z. have alnmdy been found (eqs. (7)
and (9) and figs. 2 and 3). The derivative 2. remains to
be found. Diilerentiating equation (13) and noting that
Lk=q,za+q.,z,

In equation (14) and hereinafter, evaluation of quantities
in the steady state at maximum lift is to be undemtood, and
the superscript (0) is omitted for brevity.

It is impossible to ensure a finite value of dZ@k at the
stagnation point because of the second+rder pole
—2j1Zg#. The physical reason for this rcmdt is the
fact that, at the stagnation point of a certain instant, the
boundary-layer velocity profile will not vanish, as in steady
flow, but rather will respond to the instantaneous acceleration
e more promptly than the outer potential flow. A profile
of magnitude e may thus be expected, vanishing in the outer
stream as well as the wall as shown in sketch (b):

Therefore, the definition of momentum thiclmess

shows that, if the velocity u in the boundary layer has a
part proportional to UI and a part proportional to C, then
the part of o (and hence of Z= fPU/vZ) which is proportional
to c must have a simple pole in U1. Actually, of course, the
quantity o is inappropriate for deiining a tbiclmess of a
profle of the type shown in sketch (b), and the appearance
of a pole in o simply indicates this lack of physical significance.

/

(b)

Sketoh (b) Nose of airfoil.

The foregoing considerations suggest that a new variable
W be defined to replace Z,:

W=gz, (15)

Substituting equation (15) into equation (14) yields

F $–~ ~s (l+ F’)W+ZF’go– ~—. —
dsq

In order that dW/okbe linite at the stagnation point, the
two poles on the right side of equation (16) must cancel,
yielding the initial condition

‘+lT%ilo=-0001”15(17)

where the numerical value is obtained using equations (3),
(7c), and (10), and the tables of reference 2. Inasmuch as
g,=Y/R (eq. (10)), the function W may be split into two
part9, as follows:

W.x+-yy (18)

so that (changing to ~ as independent variable) equations
(16) and (17) provide

~=c(dx+c(d (19a)
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c(q) =(l+F’) ;

C(q) =2j,Rz [:+~–+ (gz.+qaz)]

X,=–O.OO1O15

$g=cw+w

d(~)=;–zF” ~

Yo=o

(19b)

(19C)

(20a)

(20b)

(20C)

Equations (19b) and (20b) are evaluated using the solutions
fo~ Z and 2., <he tables of reference 12, and-equations (3)
and (10).

Solutions of equations (19) and (2o), obtained by ~he
method used to fmd Z, are presented in figures 4 and 5 and
table I.

-.
Cmrdlr!ute on wfoce o~ ellipse, q, deg

FIGURE4.—Distribution of parameter X of unsteady boundary layer.

6

-4

Coordinate on surf me d ellipse, q, deg

FIGtmE 5.—Distribution of parameter Y of unsteady boundary layer.

DETERMINATION OF LIFT

UNSTEADY BALANCE OF SHED VORTICITY

In order to determine the unsteady pressure lift, the
coeilicient Y (eq. (10)) must be determined. In steady flow
(see the discussion accompanying eq. (6)), the circulation
r was obtained by requiring that vorticity be shed in equal
and opposite amounts at the two separation points.

In the present unsteady problem, the net rate of vorticiLy
appearance in the wake must vanish, not only in the quasi-
steady approximation, but to order & as well, in view of tho
assumption that the quasi-steady circulation is maximum.
By the classical theorem concerning constancy of circula-
tion, any net rate of discharge of vorticity into the wake
must be balanced by a rate of increase of circulation about
the body. If the airfoil is nominally at mmimurn lift,
then the circulation terms (eq. (10)), to order e= &l/U, am

0.0761+~c

The rate of increase of this expression is at most of orcler
&, and therefore there cannot be any net dischargo of vor-
ticity to order &.

If the airfoil were not at mtium lift, then the oxpreesion
for circulation would contain a term proportional to Aa,
which would change at the rate &, and would have to be
balanced by a net rate of vorticity discharge of orcler &.
In turn, this distribution of circulation in the wake would
induce further modifications of the potential flow. Thcreforo,
the assumption of mtium lift permits the neglect of tho
induced effects of distributed circulation in the wake.

Movement of separation points,-In order to offecL a
balance (to order &) of vorticity shed at the separation
points, the movements of the separation points must bo
taken into account. The position of the top separation point
~ may be written

(21)

*()‘he*acient& ;
is obtained from the quasi-steady

solution:
At separation (K= –0.1567),

(~)i=-(-)i

From equations (7),

~= –+ (.%+4.)

whence, holding K tied at —0.1567,

(22a)

(22b)

(23)
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where Z and Z= may be obtained from table I.
Tlm coefficient (&@c)5 comes from the unsteady solution:

(~)i=-(%),
I?rom equations (7),

which, upon substitution of equations (10), (15), and (18),
becomes

q, 35zl’ ~h ~q (24)~c=–; (x+-r’Y)y+=,

Equations (22rL) and (24) thus provide that

At the bottom stagnation point, equations (21), (23),
rmd (25) apply, with subscript g replacing subscript %.

Equation of vorticity shed at separation points.-Taking
into account the motion of the separation point, the rate of
vorticity shedding at the top is given by the following
equation, which replaces equation (6):

J3Fz%)zd+4z’ (26)

From equations (3) and (21),

Equations (27) yield the following expression for the right
side of equation @6):

EsTression (28) represents clockwise vorticity shed at the
top separation point. At the bottom separation point, the
amount of counterclockwise vorticity shed is also represented
by equation (28), if subscripts T are replaced by S.

Therefore, equating the net discharge of vorticity to zero,

In the quasi-steady flow, (u,);= (u,):, and the coeihient of
Aa must be zero. Therefore, the coefficient of e in equation
(29) must vanish:

or

(30)

Equations (23), (25), and (30) qnd table I sutlice to deter-
mine Y (which appears in eq. (25)). The result is,

‘Y=-6.1 (31)

Definition of separation point,-In effect, it has been
assumed that, during the unsteady motion, separation is
defined by the condition of zero shear (K= –0.1567) and
the subsequent appearance of reverse flow relative b the
surface, just as in steady flow. This assumption is open to
question. The question is how (or whether) local velocity-
proiile characteristics may be interpreted to identify the
leading edge of a wake.

The usual steady criterion, which notes the appearance
of reverse flow downstream of the point of zero shear, implks
that the fluid in the wake is iixed relative to the body. If,
in the unsteady case, the wake may still be regarded. as
fixed to the body, then it may be that the steady criterion is
still applicable.

However, the present assumption of the steady definition
of separation is not advanced with complete confidence.
Rather, it is felt that only a suitablo experiment can settle
this point.

m OFmom

The steady lift coeiiicient of the airfoil of figure 1 is deter-
mined from the steady circulation:

c~o)— Pur–=&=2T(0.0761)= 0.48
; pL7J(21)

There are two contributions to lift proportional to
the unsteady circulation,

C% =2n7= –38.6

(32)

c. I?rom

(33)

and a further contribution is found by consideration of the
remainder of the potential flow. The two components of
Kelvin’s impulse for the flow illustrated in figure 1 (leaving
circulation out of account) are

1=,Iv=rplJP(~ cos a, Sk a)

(See pars. 71 and 123 of ref. 11.) Whence, the corresponding
components of vector force are

bI
F., FH=k ~=rPU1’a (–L?’ sin a, cos cc)

and the lift is

431J87&ci7-G7
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The following lift coefficient results:

——— -. .——

1291—NATIONAL ADVISORY COMMJ.TTEE FOR AERONAUTICS

Cg=; (l+y) (l+% Cos2$=3.09 (34)

The iinal e.spression for lift combines equations (32), (33),
and (34):

C.=cp + e(c&+cfi))

al=0.48—36 ~ (35)

The sign of the second term of the result of equation (35)
indicates that, while angle of attack is increasing, the lift
is lower than the quasi&eady value, and higher if the angle
of attack is decreasing. Thus, near mtium lift, the lift
curve would exhibit a counterclochvise hysteresis loop
enclosing the stall point. This result is perhaps counter to
expectations, because clockwise hysteresis is found experi-
mentally for oscillating airfoils. It may be that diiferent
directions of hysteresis should be expected when the airfoil
oscillates and when, as in the present study, the stream direc-
tion oscillates.

In any awe, it may be shown that the overriding effect
producing counterclockwise hysteresis in the present prob-
lem is the quasi~teady movement of the separation point
over the top surface. As this separation point moves forward
under increasing angle of attack, clockwise vortici~ in the
boundary layer joins the wake as the separation point passes.
Accordingly, a counterclockwise airfoil circulation (negative
-y) is required to balance this effect. The term of equation
(26) that is concerned with this movement is the one in-
volving d5/dt.

For the elliptic airfoil problem treated herein, the quasi-
steady movement of the upper separation point is quite
extensive; numerically, ZJj/h= 13.9, indicating that the
separation point is very loosely fixed to the airfoil suface.
By way of contrast, in the case of the rotating circular cy-
linder, there is no efFect of this sort, because a change in
angle of attack produces no quasi-steady movement of the
separation point at all. Other contributions to the shedding
of vorticity then lead to the result of clockwise hysteresis
for the circular cylinder.

LIPT HYSTERESIS

The foregoing analysis does not provide a complete theory
of unsteady flow about a stalled airfoil. Rather, the analysis
illustrates the considerations that would underlie such a
theory and further make plausible the general assumption of
an expansion of lift. coefficient in the form of equation (35).
This expansion would be valid for nearly quasi-steady condi-
tions. Also, it has been shown that a cmmterclochise
hysteresis loop may be espected at a nominal condition of
maximum lift with, apparently, a large amplitude.

If the foregoing conditions are met, and Aa is simple
harmonic,

Au a sin 2mA (36a)
then

& a—2mu sin ‘(2zwt-90°) (36b)

Use of relation (36b) in the lift formula (35) may be said to
correspond to the assumption (ref. 5) of a positivo lift-
curve slope and a phase lag, 90° in this case, though tho
positive slope would not correspond to the steady lift curve.
The hysteresis loop for this case appears as an ellipse on tho
lift curve of figure 6 (a). The amplitude and width of tho
loop are assumed small in the present discussion and nro
exaggerated in figure 6.

If a is not simple harmonic, then the concept of phase lag
is altogether inappropriate. For example, if a is more
nearly a “saw-tooth” function of time (fig. 6 (b)), then the
lift increment is nearly a “battlement” function. The
corresponding hysteresis loop is nearly rectangular. If a

changes according to an exponential pulse (illustrated by a
Gaussian curve in fig. 6 (c)), then the hysteresis loop is
egg-shaped, with the broad end to the right.

(a)

(a) Harrnonio

$%?%

: Jo), CL(0)

/

KKfylift cum

1=(0)

Angle of attack, a

1 I

Time, t Angle of oltack, u

(b)

(b) “Saw-tooth” funotion a(t).
t!,

(o)Cj—-

Angle af attc-ck, a

(c) Exponential pulse a(t).

l?TCnJEE 6.—Variation of lift coefficient and angle of attaok with thrm
and with each other.
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CONCLUSIONS

Tlm analysis of rotating stall in an axial-flow compr~or
requires speciiimtion of a dynamic lift curve applicable
near stall. It has previously been suggested that unsteady
lift hysteresis is an important characteristic of such a curve.

Consideration of the familiar experimental fact of lhlagnue
lift on a rotating cylinder indicates a theoretical approach
to the question of aerodynamic hysteresis which, though
certainly not definitive, may prove helpful. The accepted
csplanation of Mzgnus lift is that, if the cylinder is in motion
toward the left and rotates clockwise, the movement of the
surfnm delays boundary-layer separation on the top and
advances it on the bottom. In steady flow, considerations
of constancy of wake circulation require that the outer
velocity at the two separation points be equal. The de-
layed separation at the top implies a lower velocity (vice
versa on the bottom), and a compensatory clockwise circu-
lation must therefore occur.

Tho foregoing reasoning is extended to apply to the prob-
lem of an airfoil of elliptic section in a stream of constant
velocity but of (slightly) oscillating direction. The airfoil
is considered to be nominally at mtium lift. This
assumption, reasonable for unsteady problems at nearly
stalled conditions, provides an essential simplification. To
first order in small quantities, the lift (circulation) increment
duo to the oscillation can depend only on rate of change of
angle of attack; and, just as in the cylinder case, all induced
wake effects may be ignored.

For purposes of computing the amount of vorticity shed
into the wake, the separation point is identitled as the point
of vanishing shear, just as in steady flow. It is not clear,
howevar, that this assumption is proper.

Under these various assumptions, the unsteady increment
in lift coefficient of the ellipse is found to be —36 aZ/U,of
which about 92 percent is due to the unsteady movement
of the separation points and the remainder is due to impulsive
pre9sure. This lift increment ~ves the amplitude of a lift-
hysteresis loop at maximum Mb. The loop is counterclock-
wise, a result that can be related to the extremely migratory
tendency of the separation point on the upper surface of the
ellipse under a change in angle of attack in steady flow.

Finally, aesuming oscillations of low reduced frequency,
certain observations may be made concerning the shapes of
hysteresis loops, and the validity of the idea of a viscous
time lag in connection with unsteady lift: If the angle of
attack undergoes harmonic oscillation, then the lift incre-
ment is also harmonic with a 90° phase lead or lag, depending
on the sign used in the definition of C,,. In this case, the
hysteresis loop is elliptic. If the angle of attack varies in a
nonharmonic manner, then the variation of lift does not
have the same dependence on time, and the idea of time lag
is inappropriate.

LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC-W

CLEVELAND, OHIO, Augwt 17, 1966
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APPmrx

SYMBOLS

The following symbols are used in this report:
A, a
B, b
c, c
c!!
CL.
CL&
d
F

fl

L
1
n

i

8

t

u
u

w

x
x
Y

.y
z

a
&

:
r
‘Y
6
P
●

;
K

v

P
T

v
u

functtiti of q (eqs. (7))
functions of ~ (eqs. ~9)j
functions of q (eqs. (19b))
lift coefficient
rate of change of lift coefficient with angle of attack a
rate of change of lift coefficient with &
function of q (eq. (20b))
univerwd function for boundary-layer calculation

(eq. (5a))
universal function for boundary-layer calculation

(eq. (13))
lift
semichord of elliptic cylkder (fig. 1)
coordinate measured normal to surface (eqs. (6), (36))
dimensionless outer velocity, =ul/V
function of q (eq.- (3))
dimensionle= coordinate measured along surface of

ellipse (@g. 1)
time
stream velocity (a constant)
velocity parallel to surface
function related to unsteady boundary layer (eq.

(is)), =gz.
function related to unsteady boundary layer (eq. (18))
Cartesian coordinate of surface of ellipse
fimction related to unsteady boundary layer (eq. (18))

Cartesian coordinate of surface of ellipse
function related to momentum thickness of boundary

O*U
layer (eq. (5a)),=~

nngle of attack --
time rate of change of a

increment in angle of attack, -a—am)
thickness ratio of elliptic cylinder
circulation in outer flow
coefficient of hysteresis in circulation (eq. (10))
over-all thickness of boundary layer
displacement thickness of boundary layer
dimensionless angular velocity, E&l/U
coordinate on surface of ellipse (fig. 1, eq. (2))
momentum thickness of boundary layer
function for boundary-layer calculation (eq. (5a))
kinematic viscosity coefficient
density
skin-friction coefficient
velocity potential
frequency

Subscripts:
z, $ evaluation at top or bottom separation point, respec-

tively, of steady flow at maximum lift (a=a(o),
e= o)

o evaluation at forward stagnation point, where q=O

1 evaluation at outer edge of boundary layer
evaluation at lower separation point

Subscxipt notation is used for partial differentiation whore
convenient.
Superscripts:
(o) steady conditions at mminmm lift
(1) unsteady contribution due to movement of sepmm-

tion points
(2) unsteady contribution due to impulsive pressure

evaluation at upper separation point
f denotes ordinary derivatives
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TABLE I.—RESULTS AT SEPARATION POINTS

Semtlon point (A=-O.1607)
Quantity

ToP (i) Bottom(~)

80.0° 340.83°
h O. 985 0.364

!7 1.210 – 1.204

% 0.139 0.137

!7- 1.192 – 7.95

$’
–O. 0062 1.40

1.11 0.41
13.3 –5.6

2
2

– 1.405 0.52
–55,6 –5. 4

Y 4.9 –4. 2

--


